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Abstract 
In this paper we propose goodness-

of-fit test based on the TL-moments. 

Elamir and Seheult (2003) introduced 

the trimmed L-moments (TL-moments) 

as a “robust “generalization of the me-

thod of L-moments. They are well de-

fined even if L-moments do not exist. 

Their sample variance and covariance 

can be obtained in closed form, Elamir 

and Seheult (2004). A distribution for 

which the trimmed L-moments exist is 

characterized by those trimmed L-mo-

ments, Hosking (2007). Several good-

ness-of-fits tests were constructed bas-

ed on "adaptive" proportions of trim-

ming and different forms for the test 

statistic. Robustness of validity and ro-

bustness of efficiency will be discussed 

and compared to other robust goodness-

of-fit e.g. Brys et al. (2008). Applica-

tions to real data will be conducted 
 

Keywords: L-moments, TL-moments, 

LQ-moments, influence function, gross 

error  sensitivity, breakdown point. 

 

AMS Subject Classification : 62F35, 

62F12, 62G35 

 
 
 

1-Introduction 
The frequency of occurrence of ex-

treme events like high floods, drought, 

or heavy rainfall corresponds always 

with extraordinary observations that af-

fect drastically the appropriate choice 

of the probability distribution and the 

efficiency of the classical estimators   

of its parameters,  Hosking and Wallis  

 

(1993) . Even when a good fitted distri-

bution can be found, there is no guaran-

tee that future values will match those 

of the past, particularly when the data 

arise from a physical process that can 

give rise to occasional outlying values. 

One approach to decide the appropriate 

model is to fit a variety of plausible di-

stributions and select the model with 

the smallest p-value of some goodness-

of-fit test. The classical goodness of fit 

tests depend on estimating the parame-

ters of the null distribution by the MLE 

which is not robust (its efficiency re-

duced drastically by small deviations 

from the assumed model). This leads to 

lower power of the test and different p-

values especially for skewed distribu-

tions; Ronchetti (1997). Hertiteir and 

Ronchetti (1994) showed that finding 

the test which maximizes the asymptot-

ic power subject to a bound on the level 

and power influence function is equiva-

lent to finding an estimator T which m-

inimizes the asymptotic variance sub-

ject to a bound on its self-standardized 

influence function. Michael and Schu-

cany (1985) proved that the Komogrov-

Smirnov statistic and the Cramer-von 

Mises statistics have a bounded influ-

ence function. That is, the significance 

level of the test is robust to small am-

ount of contamination in the model. 

 

    In regional frequency analysis the L-

moments and the TL-moments estima-

tors are used extensively to estimate the 
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population parameters. The L-moments 

are defined as linear combinations of 

expected values of order statistics of an 

absoulutly continous random variable, 

(Hosking 1990).The advantages of L-

moments over classical moments are: 

able to charactrize a wider range of dis-

tributions; and the L-moments estim-

ators are “more robust to the presence 

of outliers”. Elamir and Seheult (2003) 

introduced an extension of L-moments 

called TL-moments. TL-moments esti-

mators are assumed to be “more robust 

against outliers” than L-moments est-

imators.The population TL-moment may 

be well defined where the correspond-

ing population L-moment does not ex-

ist. Hussien (2011) derives  the influe-

nce functions and the breakdown points 

of the L-moments and the TL-moments 

estimators. Unlike the TL-mo-ments es-

timators the L-moments esti-mators are 

not  locally nor globaly rob-ust.The TL-

moments estimators are not only robust 

but it can be adapted ac-cording to the 

shape of the data by varying the propor-

tions of trimming (symmetric trimming 

for heavy tailed shapes and asymmet-

ric trimming for skewed shapes).  

 
 

Dalen (1987) showed that the classi-

cal moment ratios are bounded and ca-

nnot attain the full range of values ava-

ilable to the population skewness and 

kurtosis. The sample TL-skewness TL-

kurtosis ratios graph are visual tool to 

goodness of fit analog to the, non ro-

bust, goodness of fit tools based on 

sample skewness and kurtosis. Moreo-

ver, it can take any of the feasible val-

ues of the population TL-moment rati-

os, Hosking (2007). Thus the TL- sk-

ewness TL-kurtosis ratios graph would 

play the role of an exploratory stage 

and a goodness  of  fit  test  would  play 

the role of a confirmatory stage by ch-

oosing the distribution with the smallest 

p-value among the candidate distribu-

tions in the first stage.  

 

Using a robust estimator (like the 

TL-moments estimators) does not guar-

antee the robustness of the goodness of 

fit test depends on these estimators. For 

a test procedure to be robust the level of 

a test should be stable under small, ar-

bitrary departures from the null hypoth-

esis (robustness of validity). Also, the 

test should still have a good power un-

der small arbitrary departures from sp-

ecified alternatives (robustness of effi-

ciency), Huber and Ronchetti (2009). A 

robust (optimal bounded- influence) 

tests can be obtained by finding a test in 

a given class that maximizes the as-

ymptotic power at the model subject to 

a bound on the level and power influ-

ence functions. For parametric tests the 

Wald-type tests and the score-type tests 

based on M-estimators are proved to be 

robust, Hertiteir and Ronchetti (1994). 

This paper presents Wald-type tests and 

score-type tests for goodness of fit ba-

sed on TL-estimators and discuss its ro-

bustness properties. 

The rest of the paper is organized as 

follows; in Section 2 discuss the ro-

bustness properties of goodness of fit 

tests and derives finite sample formula 

for influence function of the test statis-

tic. Section 3 discusses the robustness 

properties of the TL-estimators. In Sec-

tion 4 we derive the optimal bounded 

influence goodness of fit tests based on 

the TL-moments and study its proper-

ties. Some Monte Carlo simulation re-

sults and a study of the River Nile data 

are provided in Section 5.  
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2. Robust Goodness of Fit Te-

sts 

 

 

Consider X1, X2, …, Xn iid with cu-

mulative distribution function  .    

Let T(.) be a weakly continuous func-

tional with values in 
p
, where Tn 

(x1,x2,…,xn) =T (Fn) is an estimator of 

 , an open convex subset of 
p
, 

and Fn   is the empirical cumulative dis-

tribution function. The functional T is 

said  to be Fisher consistent for  if 

.(see Rao, 

1975 page 345). The influence function 

of a statistical functional T at a distribu-

tion F is defined by 

 
 
 

IF(x;T,F) =     (1)                          

     rovided that the limit exist, where  

is a degenerate density function that 

puts all its mass at the point x. Under 

regularity conditions sufficient for the 

von Mises expansion 
 

)–T(F)=  (2)                       

to exist, we have         

and                   

,(3)                                                    

with 

AV(T,F) = dF(x), (4)                                        

See, Hampel et al. 1986. 

An estimator T(F) is locally robust if 

its influence function is bounded. For a 

positive definite matrix B, the gross 

error sensitivity of a statistical func-

tional T is given by 

   (5)        

The gross error sensitivity provides 

an upper bound for the asymptotic bias 

of T(Fn) over a sufficiently small -

contamination neighborhood of the as-

sumed model. When B=Ip one gets the 

so-called unstandardized gross error 

sensitivity (Hampel et al., 1986). When 

the norm generated by the inverse of 

the asymptotic variance matrix, B = 

AV(T,F)
-1

 it produces the self-standar-

dized gross error sensitivity (Krasker 

and Welch, 1982). The breakdown po-

int of an estimator describes up to what 

distance from the model distribution the 

estimator still gives some relevant in-

formation. An estimator with a break-

down point close to 0.5 is to be global 

robust.  

The computation of the influence 

functions needs tedious numerical inte-

grations for each probability distribu-

tion. Instead one may compute the dis-

credized form of the influence function 

given by 

   SC(Tn , y)=n[Tn (x1, x2 ,…,xn-1 , y) – 

Tn-1(x1, x2 ,…,xn-1)]         (6)                           

When Tn (x1, x2 ,…,xn) = T(Fn ) for 

any n and any sample (x1, x2 ,…,xn ), 

then 

SC(Tn,y)=

, and 

,see Hampel et al. (1986). The number  

S(Tn)=  

is called a sensitivity of the func-

tional Tn to an additional observation, 

Jureckova and Picek (2006). 

    The two fundamental goals in robust 

testing are:(1) the level of the test sh-

ould be stable under small, arbitrary 

departures from the null hypothesis (ro-

bustness of validity), and (2) the test 
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should retain a good power under small, 

arbitrary departures from specified al-

ternatives (robustness of efficiency). 

Many classical inferential procedures 

do not satisfy these criteria. The non-

robustness of the test is due simultane-

ously to  

1- The non-robustness of the parameter 

estimator , 

2- The non-robustness of the test statis-

tic. 

Consider a parametric model,   

where  is a real parameter Let H0 :  = 

o be the null hypothesis and n = o + 

 a sequence of alternatives. Assume 

the test statistic Tn is Fisher consistent 

and the regularity conditions that as-

sures (2), (3) and (4) above are satis-

fied. Consider a neighborhood of distri-

butions =  where 

G is an arbitrary distribution. One can 

view the asymptotic level  of the test 

as a functional of a distribution in the 

neighborhood. Then by a von Mises ex-

pansion of  around  , where ( )= 

0,the nominal level of the test, the as-

ymptotic level and (similarly) the as-

ymptotic power under contamination 

can be expressed as 

  (7)                          

(8) 

where 

 , (9) 

, (10) 

( )= 0 is the nominal asymptotic 

level,  ) is 

the nominal asymptotic power, 

 is Pitman’s 

efficacy of the test,  , 

d  is the asymptotic variance of 

T, and  is the 1-  quan-

tile of the standard normal distribution 

 and  is its density. It follows that  

the level influence function (9) and 

power influence function (10) are    

proportional to the self-standardized 

influence function of the test statistic  

 

,Huber and Ronchetti (2009). Thus, one 

can obtain the maximal level and the 

minimal power over the neighborhood 

as 

 

 
Therefore,bounding the influence 

function of the test statistic T from ab-

ove will ensure robustness of validity 

and bounding it from below will ensure 

robustness of efficiency. This will not 

generally guarantee that the level and 

the power will remain stable in the pr-

esence of large deviations. The effect of 

large deviations is described by the br-

eakdown point. A finite sample defini-

tion of the breakdown point of a test 

was introduced by Ylvisaker (1977). 

Consider a test with critical region (Tn  

cn).The resistance to acceptance  [re-

sistance to rejection ] of the test is 

defined as the smallest proportion m/n 
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for which there are values x1,x2,…,xm in 

the sample with Tn < cn [Tn  cn]. 

In the multivariate case and for gen-

eral parametric models, the classical 

theory provides three asymptotically 

equivalent tests, Wald, score, and like-

lihood ratio test, which are symptotical-

ly uniformly most powerful with re-

spect to a sequence of contiguous alter-

natives. If the parameters of the model 

are estimated by a robust estimator such 

as an M-estimator Tn defined by the 

estimating equation , then 

a robust form of the three classical tests 

can be constructed by replacing the 

score function of the model by the func-

tion . This leads to formulas similar to 

(7) and (8) and to optimal bounded in-

fluence tests; Heritier and Ron-chetti 

(1994). 

Bounded influence robust goodness 

of fit tests where proposed by Vectoria-

Feser (1993). For the non-nested hy-

potheses: Ho: F=  vs. H1: F=  , with 

 and  being two sets of parameters, 

Vectoria-Feser (1997) showed that the 

LIF for the Cox test statistics, Cox 

(1963), is unbounded. Vectoria-Feser   

(1997) therefore proposed a robust Co-

x-type test statistic based on the optimal 

B-robust M-estimator presented by Ha-

mpel et al. (1986). However this test pr-

ocedure does not have a high break-

down point especially when the dimen-

sion of the parameters is large.This me-

ans the test procedure will breakdown 

when a cluster of outliers is present  in 

the data;  Vectoria-Feser (2000). 

 

 

2.1. P-value Influence func-

tion 

The level and power influence func-

tions depend on the chosen error proba-

bilities. Alternatively, one might con-

sider the influence of outliers on the test 

statistic or some function of it, as the p-

value. The P-value or observed signifi-

cance level is used to assess the stre-

ngth of the evidence against a null hy-

pothesis H0. Assume the test statistic Tn 

has been chosen so that large values in-

dicate significant departures from H0.  

Lambert and Hall (1982) showed that 

the P- value is asymptotically log- nor-

mal under an alternative F if the test 

statistic Tn , is asymptotically normal 

and if  the tail of a cdf of its sampling 

distribution under the alternative satis-

fying weak regularity conditions. This 

shows that the mean, which is half the 

Bahadur slope c( ), and the standard 

deviation () of the asymptotic distri-

bution of the log transformed P-value 

permit approximation of both the level 

and power of the test. The influence 

function for – n
-1

 log Pn defined by 

 IF(x;P,F)=  (11)  
             

describes the extent of the error in 

the observed significance level relative 

to its size, Lambert (1981). If c( ) has 

a finite first derivative  in a neighbor-

hood of T(F) and  IF(x;T,F) then            
 

IF (x;P,F) = (F) IF(x;T,F)    (12) 
             

Definition: P-value sensitivity 

curve 
The p-value influence function eval-

uates the effect of outliers on the test 

under the alternative. A corresponding 

p-value sensitivity curve is defined by  
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 SC(Pn , y) = 

 

 

Lambert (1981) showed that  

 
As an alternative to the level influence 

function using the p-value approach we 

define 

SC(Pn, y| )=n[   (x1, x2 ,…,xn-1 , 

y| ) -  (x1, x2 ,…,xn-1| )]                 

(13) 

It measures the effect of adding out-

liers on the p-value. The slope of this 

curve is an indication of the validity 

robustness of the test. If SC(Pn , y| ) < 

α this is an indication that the test br-

eakdown. Thus we can estimate the br-

eakdown point of the test by 

( number of y’s such that SC(Pn , y| ) 

> α). 

 
 

2.2 Moments based goodness 

of fit tests 
Under regularity conditions, the in-

finite set of moments (when these exist) 

characterize a distribution; thus, it is 

appealing to use the first s sample mo-

ments, or functions of these, as test sta-

tistics for goodness of fit. For example, 

the sample skewness b1 =  and 

the sample kurtosis b2 =  , wh-

ere,  )
r
 have long been 

used to test for normality.Gurland and 

Dahiya (1970) and Dahiya and Gurland 

(1972) developed a procedure for go-

odness of fit based on the sample mo-

ments. The method depends on being 

able to find both a vector function E of 

length s of the first s population mo-

ments and a parameterization  of the 

distribution, where  has length q, q<s, 

such that E is linear in . The test statis-

tic has an asymptotic  distribution, 

t=s-q. The influences functions for the 

central moments are unbounded, Sehđr-

lđoğlu (2010). Thus they are not locally 

or globally robust. Moreover its break-

down points are zero. Thus, the good-

ness of fit tests based on the sample 

moments are not robust also.  

The above tests can be viewed as a 

special case of the following generali-

zation. Let w=(  be an (unbi-

ased) estimators of  , 

such that 

 

then , under H0 the generalized test sta-

tistic 

   (14)                                      
               

 Brys, et al. (2008) propose several 

goodness-of-fit tests based on robust 

measures of skewness and tail weight. 

The robust skewness measure, proposed 

by Brys et al. (2003) is defined as 

MC(F) = ) 

with x1  and  x2  sampled from F, mF  

= F
-1

 (0.5) and the kernel function h 

given by 

 

 

) =  

     This estimator has a breakdown val-

ue of 0.25 and a bounded influence 

function, Brys et al. (2004).  

As robust measures of the left and 

right weight,  Brys et al. (2005) applied 
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the MC to the left and right half of the 

sample respectively: 

LMC(F) =-MC(x < mF)  and RMC(F) = 

MC(x > mF), 

yielding a breakdown value of  0.125. 

These measures can be computed even 

when the finite moments does not exist. 

Brys et al. (2008) studied the pr-op-

erties of the MC-LR test of the form 

(11) where s=3, w1=MC, w2=LMC , and 

w3=RMC. Also, they study the test of 

Moors et al. (1996) where 

w1 =       

and 

 w2 =       

are robust measures of skewness and 

kurtosis. Both tests has a breakdown 

value of 0.125. They did not derive the 

level influence curves of the above te-

sts,but a simulation study showed that 

both MOORS and MC-LR are not high-

ly influenced by outliers. 

 

 
 

3.The TL-moments estimators 

 
 

     Let X be a real values continuous 

random variable with cumulative distri-

bution function cdf F(x), and let X1:n 

X2:n…Xn:n be the order statistics of a 

random sample of size n drawn from 

the distribution of X.The L-moments of 

X are expectations of certain co-mbi-

nations of order statistics defined by  

 (15) 

Substituting into (1) the standard 

expression of expected value of order 

statistics  

 

 

yields the classical L-functional pre-

sentation of the distribution L-moments 

given by Hosking (1990) as 
                        

where  

 

,    (17)                                                                     

and 

 is the rth shifted Legender poly-

nomial related to the usual Legender 

polynomial by the relation   

Hosking (1990) showed that the estima-

tor of  
                       

  (18)       

, where =  is 

unbiased. 

  Under suitable regularity condi-

tions,  Hosking (1990) proved that   

 , k=1,2,…,m converges in 

distribution to the multivariate normal 

distribution.   

Elamir and Seheult (2003) intro-

duced the trimmed L-moments (TL-

moments) as a “robust “generalization 

of the method of L-moments. The TL-

moments assigns zero weight to ex-

treme observations, and they are well 

defined even if L-moments do not exist. 

The k
th
 population TL-moment with 

trimming proportion (s,t) is defined by:                                           
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 (19)    

The TL-moments can be written as 

                                        

    (20)                                             

where 

                          

 

 
An unbiased kth sample TL-moment 

with trimming proportion is given by 

Elamir and Seheult (2003) as  

                                     

     (21)                   

with                 

 (22)                      
 

  Under suitable regularity con-

ditions Hosking (2007) proved that 

 converges in 

distribution to the multivariate normal 

distribution , where the ele-

ments  (u,v=1,2,…,m) of  is 

given by 
 

)23) 
 

  

The exact variances and covariance 

of the sample TL-moments are given by 

Elamir and Seheult (2003).The R ba-

ckage lmomco, Asquith (2011), com-

putes the sample TLmoments and the 

theoretical TLmoments for several dis-

tributions. Hosking (2007) (Theorem2) 

proved that a distribution for which the 

TL-moment exist is characterized by 

those TL-moments.  

Hussien (2011) showed that the kth TL-

moment estimator is locally and global-

ly robust while the kth L-moment esti-

mator is not. 

Lemma 1; Hussien (2011) 
1- The influence function of the kth L-

moment estimator is unbounded, its 

gross error sensitivity is infinity, and 

its finite breakdown point is zero. 

2- The influence function of the kth 

TL-moment estimator is given by 

(24) 
3- The gross error sensitivity of   

is                          

 (25)                 

 

Hosking (1990) showed that the L-mo-

ment ratios, defined by 

  k=3,4 

are appropriate measures of the pop-

ulation skewness and kortosis.  Hosking 

and Wallis (1997) showed that the L-

moment ratio estimators are nearly un-

biased for all sample sizes and all dis-

tributions. Values of  and  are pl-

otted to yield an L-moment ratio dia-

gram. Parametric families of distribu-

tions may occupy points, lines or re-

gions on the graph and the sample L-

moments ratios of data sets can be plot-

ted as points. Thus, in a model choice 

process the L-moment diagram would 
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play the role of an exploratory stage, 

where candidate distributions are se-

lected, and a goodness of fit test would 

play the role of a confirmatory stage. 

Graph 1 gives the SC(  and SC 

(  for a random sample of size 

100 from a standard normal distribu-

tion.This shows that influence functions 

of   and  are unbounded. This is 

also true for any absolutely continuous 

distribution and for all sample sizes. 

The breakdown points for the L-mo-

ment ratio estimators are zero, Hussien 

(2011). 

The TL-moment ratios are defined by 

    k=3,4 

Hosking (2007) showed that sample 

trimmed L-moment ratios provide an 

effective way of distinguishing between 

heavy tailed distributions. The trimmed 

L-moment ratio diagram covers a wider 

range of distributions; for example the 

Cauchy distribution. Graph 2 gives the 

SC(  and SC( for a random 

sample of size 100 from a standard 

normal distribution. The graph shows 

that the influence functions are bound-

ed.The same results hold for many 

probability distributions we considered 

e.g. gamma with different shape param-

eter, the lognormal, and the extreme 

value distribution. One would prefer to 

use the TL-moment ratio diagram in the 

exploratory stage, since its influence 

functions are bounded. Elamir (2010) 

derive an optimal choice for the amount 

of trimming from known distributions 

based on the minimum sum of the abso-

lute value of the errors between the 

sample quantile function and its TL-

moments representation  

 
   

 

 

 

 

 

 

  (26)   

where 

 
Accordingly, one can determine the 

appropriate amounts of trimming ( , ) 

as the values that minimizes , 

then use the TL-moment ratio diagram 

with ( , ) to determine the candidate 

distributions. The confirmatory stage 

should use a robust goodness of fit test. 

Thus we suggest constructing a robust 

goodness of fit test that based on the 

TL-moments. The next section propos-

es two test statistics based on the TL-

moments and prove its robustness prop-

erties. 

4. Description of the tests  

 

Let X1,X2,…,Xn be a sequence of iid 

random variables with an underlying 

continuous cdf F. Consider the follow-

ing hypotheses: H0s : G(x) = F(x;0) 

versus H1s : G(x) F(x;0) where 0   

 R
q
 is a specified value of the vector 

parameter .  

 
 

Define  
t
 to be 

the vector of the first four TL-moments 

computed for F(x, ;0), i.e. under H0. 

Also, let 
t
 be the 

sample four TL-moments. 

Consider the generalized test statistics 

 
 

T1= ( )
t

( )     (27) 

Lemma (2): 
Under H0 the test statistic  

T1= n( )t ( )           
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has an approximate chi-square distribu-

tion with m df 

Proof: 

 
 

          Hosking (2007)  proved that 

 converges in dis-

tribution to the multivariate normal dis-

tribution , where the elements 

 (u,v=1,2,…,m) of  is given by 

(20). The result is immediate by (11). 

Lemma (3) 
    Under the regularity conditions, nec-

essary for the asymptotic normality of 

 , the p-value influence function of  

T1 is given by IF(x;P,F) = (F) IF(x;T1 

,F) 

where  

(F) =  and 

 IF(x;T1 ,F) =  

Proof:  

The p-value sensitivity curve of T1 is 

given in Graph ( ). 
 

This shows that ……. 
 

For the comparison we will graph the p-

value sensitivity curves of the following 

test statistics: 

T11= n( )t ( )          

s=t=1 

T12= n( )t ( ) s=0, 

t=1 

T13= n( )t ( )   

s=0, t=3 

T14= n( )t ( )    

s=0, t=5 

T2= n( )t ( ) 

T3 is the MOORS test 

T4 is the   MC-LR test 

T5 =   
Graphs   shows that 
A suggested algorithm for ro-

bust goodness of fit 
Step0: determine the appropriate pro-

portion of trimming (if any) by the Box 

plot and solving e( ) 

Step 1: draw the tl ratio diagram ( with 

s and t determined in step 0) 

Step 2: plot the sample tl ratios on the 

tl ratio diagram to select the candi-

date distributions 

Step 3: apply the goodness of fit with 

test statistic T1 or T2 for all candi-

date distributions 

Step 4: select the distribution with the 

highest p-value. 

5. Example Application: Flo-

od frequency distribution 

for the River Nile: 
 

The River Nile data has the advantage 

of being long recorded through history 

(Yearly and monthly data available 

from 1870-1993). The yearly data is the 

maximum flood inflow at Aswan. 

The Generalized Lambda Distribu-

tion (GLD) best fit procedure we use 

utilize TL-moments with different 

trimming proportions from each tail, 

and judge the best fit according to a 

goodness of fit test p-values. 

 
 

Graph (3) below is a statistical 

summary of the data available (1870-

1991) which constitutes a time-series of 

122 observations. Presence of 2 outliers 

is clear from the graph (year 1913 

drought and year 1878 high flood). The 

data is slightly right-skewed. It is ap-

parent that classical parametric estima-

tion methods would not be appropriate 

and more robust estimation methods are 

required. 
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The GLD best fit procedure: 
1. Calculate first four sample estimates 

relevant to each estimation method: 
 

The first four moments, first four L-

moments , first four TL-moments(1), 

TL-moments(2), TL-moments(5), TL-

moments(0,1), TL-moments(0,2), TL-

moments(0,5), TL-moments(1,2), TL-

moments(1,5) and the  percentiles me-

thod. 

2. Select suitable initial values for the 

optimization process, values of [0.1, 

0.1, 0.1] were chosen as an initial 

estimate for the GLD parameters 

(2, 3, 4 ) for all methods.  
 

An optimization process is started to 

find the best values of 2, 3, 4  

3. The output of the optimization pro-

cess is the best attained values of the 

parameters (2, 3, 4).  

4. Calculate the value of λ1 given the 

optimized parameters. Generate 122 

observations from the uniform dis-

tribution, using the estimates of (1, 

2, 3, 4), transform them into a 

GLD (1, 2, 3, 4).  

    The Matlab procedures of Hussien 

and Afifi (2009) were used to conduct 

all the steps above. 

 

5. Run a two-sample Kolmogorov-Sm-

irnov test between the flood data and 

the GLD ( 1, 2, 3, 4) generated 

data. 

6. The method with the highest P-value 

for the Kolmogorov-Smirnov test is 

considered to give the best fit for the 

data. 

7. Find the distribution approximated 

by the best GLD in step 6. Karian 

and Dudewicz (2000) give tables for 

these approximations for the method 

of moments only. The R-cran pack-

age “lmomco” draw the L-skewness 

L-kurtosis ratios graph. Many distri-

butions are presented on the graph 

by point, line or area. You choose 

graphically the distribution nearest 

to the sample L-skewness L-kurtosis 

ratios. For this study we utilize this 

graph to decide the appropriate par-

ent distribution. A simulation study 

is needed to draw new graphs for the 

TL-moments ratios for different 

proportions of trimming. 

A summary of the results is attached 

in the following table. 

 

 

Table (1) Estimates of the GLD parameters for the River Nile data. 

 1 2 3 4 1 2 3 4 3 4 

P-

value 
moments 90.6662 18.7911 0.5414 3.1565 79.3073 0.0097 0.0583 0.1977   0.6941 

L-moments 90.6662 10.5085 1.3012 1.3310 78.8783 0.0079 0.0439 0.1570 5.5253 19.7622 0.8059 

percentile 88.000 48.900 0.6355 0.4652 83.5744 -0.0183 -0.1104 -0.2147   0.4804 

TL(1) 89.3650 5.5065 0.5912 0.4165 79.2051 0.0034 0.0178 0.0614 5.2314 18.0431 0.5016 

TL(2) 88.8329 3.6952 0.3158 0.2098 79.9975 -0.0001 -0.00005 -0.0015 5.4489 16.7159 0.8351 

TL(5) 88.3005 1.8158 0.0897 0.0446 79.9675 0.0000 0.0000 0.0001 5.2393 16.5533 0.9678 

TL(0,1) 80.1576 6.9055 -0.0199 0.7946 80.2370 0.0008 0.0044 0.0130 5.6054 16.6799 0.9616 

TL(0,2) 75.5539 5.5364 -0.4683 0.6203 80.2880 0.0000 0.0000 0.0001 5.5796 16.4911 0.5942 

TL(0,5) 69.3671 4.1693 -0.8260 0.5545 80.9874 0.0000 0.0000 0.0000 5.7868 15.3429 0.4338 

TL(1,2) 83.8585 4.1454 0.1657 0.2523 79.9093 0.0001 0.0006 0.002 5.3986 16.8062 0.9962 

TL(1,5) 76.5144 2.7424 -0.1381 0.0824 89.2677 0.0308 0.4816 0.4144 15.6105 13.4325 0.4411 
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Results and comments: 
1- The method of TL-moments(1,2) 

gave the best fit to be GLD (79. 

9093, 0.0001, 0.0006, 0.002) with 

P-value =0.9962. 

2- The method of TL-moments(0, 5) 

gave the worst fit to be GLD 

(80.9874, 0.0000, 0.0000, 0.000079) 

with P-value =0.4338. 

3- The L-moment ratio diagram for 

Nile flood data is displayed in fig-

ure (5), with values of the sample τ3 

and τ4 marked as a big circle in the 

middle of the figure. The figure su-

ggests that this pair of values could 

coincide with either "the Rayleigh 

distribution" or "the Pearson type 

III distribution".  

4- The L-moments ratio diagram is a 

graphical tool. To compare its re-

sult to the best fit procedure we 

need to do the following: 

a- Construct a TL-moment(t1,t2) ratio 

diagram, so we compare the best 

TL- moments estimates obtained 

with the “nearest point” in the ratio 

diagram. The diagram should cover 

a wide class of different shapes. 

b- Convert the best TL-estimates to 

the corresponding parameters of the 

distribution chosen by the diagram. 

c- Generate a sample of the same size 

as the original data from the chosen 

distribution, Fdgr say, with the pa-

rameters estimated above. 

d- Generate a sample of the same size 

as the original data from the GLD 

suggested by the best fit procedure, 

FGLD say. 

 

 

 

 

 

 

e- Construct a two-sample Kolmogo-

rov-Smirnov test to test H0: Fdgr= 

FGLD. Construct another two-sample 

Kolmogorov-Smirnov test to test 

H0: Fdgr=F (the original distribu-

tion).                                                                                               

Unfortunately, new algorithms is nee-

ded to perform steps a and b. 

5- To illustrate the robustness of the 

best fit procedure in this example 

we run a classical best fit procedure 

using the statistical package Stat: 

Fit. The procedure computes the 

MLE for the parameters of many 

distributions. Using these estimates 

it computes the p-value of the Kol-

mogorov-Smirnov goodness of fit 

test. Finally it ranks the distribu-

tions according to the p-values. The 

best fits according to this procedure 

were 

    Pearson type VI (42, 168, 9.3, 32.9) 

then 

Extreme value(81.4,15.9) 

 

     Tiku and Akkaya (2004) showed 

that the MLE for censored sample is 

asymptotically equivalent to the robust 

MMLE (Modified Maximum Likeli-

hood Estimator). So we remove the 

two outlying observations and repeat 

the procedure.The best fit distribution 

become 

 Pearson 3(46.9, 6, 7.26) 

 Pearson 5(14.1,19.6,1.43e+3)   

Thus, we get the same best fit using 

the L-moments ratio diagram and the 

MLE for censored samples. In fact 

Pearson type III has been used exten-

sively in hydrology frequency model-

ing, see Singh (1987) and Hosking and 

Wallis (1993).  
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Graph (3) statistical summary of River Nile data 

 

 

 

Graph (4)  L-moment ratio diagram for the River Nile flood data. 

Sample (τ3 &τ4) marked as a large circle in the middle 

 



 

 

 

 

 


