Journal of Alexandria University for Administrative Sciences®© Vol. 59, No. 2, March 2022

Mok-Nskart: New Procedure for estimating
Confidence interval of Steady State

Simulation Output Mean'

Dr. Somaia Mohamed Said

Lecturer of applied statistics, Department of Statistics, Mathematics& Insurance
Faculty of Commerce, Alexandria University, Egypt.

somaia.said@alexu.edu.eg

ABSTRACT

Discrete-event simulation can be classified as either finite-horizon or steady-state. Finite-
horizon (terminating) simulation models ended at a specific time or by the occurrence of a
specific condition. On the other hand, steady-state (non-terminating) simulation operates
(at least conceptually) into the indefinite future; and in this case the interest focus on long-
run average performance.

Non-overlapping Batch Means (NBM) method is one of the most effective methods used for
analyzing steady-state simulation output.

This paper presents a simulation procedure undertaken in the automotive industry.
Therefor it aims First, to develop a new procedure for steady-state simulation output
analysis "Mok-Nskart", it is designed to deliver a confidence interval for the steady-state
mean of a simulation output process. Mok-Nskart can be considered as an extension of the
method of NBM. The present study aims secondly, to evaluate the performance of Mok-
Nskart, by comparing it with other simulation analysis procedures—namely N-Skart and
MSER-5.

Keywords: Confidence interval (CI), Non-overlapping Batch Means (NBM), Steady state
simulation analysis.
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I. INTRODUCTION

The complexity of many real-world systems involves many unaffordable
analytical models: queuing systems, supply chain and sustainability.
consequently, such systems are commonly studied using simulation. Simulation
is useful to measure performance in systems that are so complex that they cannot
be described by analytical queuing models (Abubakar; Adamu; Abdulkadir;
Abdulkadir, 2020; Hanna; Abdelghany; Abdou, 2021; Elhariry, 2020 & Elgazzar, 2021).
Common model taxonomy classifies a simulation problem along three main
dimensions (Law & Kelton, 2000): (i) Deterministic vs. Stochastic. (ii). Static vs.
Dynamic (depending on whether they require a time component). (iii).
Continuous vs. Discrete (depending on how the system changes). Discrete event
Simulation is a specific technique for modeling stochastic and or deterministic,

dynamic, and evolving system.

Discrete Event Simulation is a comprehensive tool for the analysis and design of
manufacturing systems. Over the years, considerable efforts to improve
simulation processes have been made. One step in these efforts is the
standardization of the output data through the development of an appropriate
system which presents the results in a standardized way (Barrera; Oscarsson;
Lidberg & Sellgren, 2018).

Simulation software is one of common manager’s aids that facilitates the
modeling and calculation of more complicated situations (Al-Fedhly and Folley,

2020).

Three fundamental problems arise in analyzing output from a stochastic steady-
state simulation. The first problem is initialization bias, as it is usually impossible
to start a simulation in steady-state operation.The second problem is
autocorrelation; caused by pronounced stochastic dependencies among
successive responses generated within a single simulation run. The third problem
is the non-normality problem caused by pronounced departures from normality

in the simulation-generated responses.

These problems prevent the construction of valid confidence intervals (CI) s for
the steady state mean, that is because standard statistical methods require
independent identically distributed (i.i.d.) normal observations to yield a valid

CL
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A good CI procedure requires dealing with the previous three problems to

provide the following:

— An accurate point estimator for the steady state mean that is approximately
free of initialization bias.

— A sufficiently stable estimator of the standard error of the point estimator
that adequately takes into consideration any correlations between the
simulation responses used in computing the point estimator.

— A suitable adjustment to the usual critical value of Student’s t -distribution
that adequately accounts for any departures from normality in the simulation
responses used in computing the point estimator and the standard error

estimator.

The method of batch-means seeks to obtain a sequence of independent samples
(batch-means) by aggregating » successive observations of a steady state
simulation. The batch size must be large enough so that the first order

correlation of batch-means is below a positive small threshold.

In the NBM method, the sequence of simulation-generated outputs {y; :7 =12,
.., n} is divided into k adjacent non overlapping batches, each of size m. For
simplicity, it is assumed that 7 is a multiple of 7 so that » = km. The sample

mean for the jth batch is:

_ 1 @f ,
ym==3"y vj=12..k (1)

i=G—-1m+1
The grand mean y(n) of the individual batch means, is used as a point estimator

for the steady state mean y

k n
_ - 1 1
ym = Fm k) =) Fm ==Yy @
=1 i=1
The objective is to construct a CI estimator for y that is centered on a point

estimator as in Equation (2).

If the batch size m is sufficiently large so that the batch means {y;(m):j =1, 2, ..

.» k} are approximately independent and identically distributed (i.i.d.) normal

random variables with mean ¥, then classical results concerning Student’s
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t-distribution can be applied. The sample variance of the £ batch means for

batches of size m is s2(m, k)

k
1 -
$(m, k) = mZ[mm) - 3m, 0] 3

If the original simulation-generated process {y; :i=1, 2, ..., n}is stationary and

weakly dependent, then it follows that as m—oco with £ fixed so that n—c0, an

asymptotically valid 100(1 — a) % CI for y is:

2(mk
y(mk)+tk11 (4)

Conventional NBM procedures such as ABATCH and LBATCH (Fishman and
Yarberry, 1997) and the procedure of Law and Carson (Law and Carson, 1979)
are based on Equation (4); and they are designed to determine the batch size m
and the batch count & that are required to satisfy approximately the assumption
of iid. normal batch means. If this assumption is satisfied exactly, then we
obtain a CI whose actual coverage probability is exactly equal to the nominal

level1— o

By contrast, the more recent NBM procedures ASAP Steiger; Lada; Wilson;
Alexopoulos; Goldsman and Zouaoui (2002); ASAP3 Steiger; Lada; Wilson;
Joines; Alexopoulos and Goldsman (200s); SBatch Lada; Steiger and Wilson
(2008) and Skart Tafazzoli (2009), are designed to determine sufficiently large
values of the batch size and the length of the initial warm-up period so as to
ensure that batch means computed beyond the warm-up period are
approximately multivariate normal with identically distributed marginal (that is,
they approximately constitute a stationary Gaussian process) but are not

necessarily independent.

If the resulting batch means are correlated, then the classical NBM rratio
underlying Equation (4) does not possess Student’s z-distribution with & — 1

degrees of freedom, so that an appropriate modification of Equation (4) is

required to yield an approximately valid CI for y.

In this article Mok-Nskart is presented, it is a non-sequential procedure for

steady-state simulation analysis which is an extension of the classical method of
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batch means. Mok-Nskart is intended for simulation experiments in which the
size of the output data set is fixed because of a limited computing budget, a
constraint on the time available for the user to complete the simulation study, or
other restrictions that prevent the user from resuming the current run of the
simulation model. Mok-Nskart is designed to deliver a CI for the steady-state
mean that has a user-specified coverage probability and that is based on a single
time series of an arbitrary fixed length. Mok-Nskart can be considered as an
extension of both two recent procedures N-Skart (Tafazzoli; Lada; Steiger;
Wilson; 2011) and MSER -5 (Mokashi, 2010).

The rest of this article is organized as follows. Section 2 provides a brief overview
of N-Skart and MSER-5 procedures. Section 3 contains an overview of the new

procedure (Mok-Nskart).

Section4 presents selected results from the experimental performance evaluation.

Section 5 contains the conclusions and recommendations for future work.

2. OVERVIEW OF PROCEDURES TO BE COMPARED

2.1 OVERVIEW OF MSER-¢

Starting a model running from an ‘unrealistic’ state can lead to the occurrence of
initialization bias. This causes the output data collected at and near the
beginning of the run to be uncharacteristic of the later and ‘true’ output steady
state value. If this uncharacteristic data is included in the calculation of the
overall response value, it can produce a biased result and therefore incorrect
conclusions. One method for dealing with this problem is to run the model for a
warm-up period until steady state is reached and remove the initialization bias by

deleting the data within that warm-up period (Hoad &Robinson, 2o11).

MSER-s was proposed by Franklin & White (2008); Mokashi (2010) and white;
Cobb and Spratt (2000), to deliver an improved simulation-based point
estimator of the steady-state mean. It aims to balance improved accuracy
achieved by reducing the estimator’s bias against the loss of precision (increased
variance) caused by truncating the original data set through deletion of some
leading observations. It is based on the following rationale given a time series {y;

:i=1,..., n} of simulation-generated responses having fixed length (sample size)

N which will be used to compute an accurate estimator of the steady-state mean
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¥, and to find a data-truncation point beyond which all the remaining

observations are typical of steady-state behavior. For each candidate data-

truncation point in the data set, MSER-5 computes a CI for y based on all the
observations beyond the truncation point; and takes the half-length of this CI as
a measure of the extent to which all the remaining observations are typical of
steady-state behavior, where a smaller CI half-length indicates closer conformity
to steady-state behavior. It follows that the data-truncation truncation point

(that is, the length of the warm-up period) should be set to minimize the length

of the CI for y based on the remaining (truncated) output sequence.

MSER-s operates on non-overlapping batch means (NBM) with batch size s to
ensure more stable behavior in the CIs used to determine the truncation point;
MSER-s constrains the data-truncation point to be in the first half of the given
data set. Therefore, MSER-5 uses as its basic data items the batch means with

batch size s

g , N
Yi = gzl Vs(j-+i» J = 1,2,.. k= lEJ (5)
i=

Where, for cach real number u, the floor function |u] denotes the greatest

integer not exceeding u.

If d denotes the data-truncation point (that is, the length of the warm-up
period), then the grand average y(k,d) and sample variance SJ% (k,d) of the

truncated batch means yj tj= d+1,..,kare:

k
_ 1 k
hd) =1=g ). % d=012.l3] @
j=d+1
k
2 — 1 5 2
$d) =g=3 ). (- 7ka) ™
j=d+1

Respectively and 100(1 — o) % CI for y has the form

k. d
Skd) + 7 o 28D
"2 Vk—d

(8)
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White et al. (2000) do not recommend using (8) as the final CI estimator for y;
instead, they recommend merely using (8) as a device for determining the

optimal truncation point d” as follows:
Zl_% sy(k,d)

d* = / —Z
arg mln05d<l§J 4

)
Butif d* = EJ, then MSER-s fails because of inadequate sample size.

Unfortunately, when d* = EJ so that MSER-s fails to deliver any estimator of

¥, white et al. (2000) do not suggest a method for increasing the sample size so

that MSER-s can ultimately deliver the desired point and CI estimators of y .

Ifd* < EJ , then MSER-s delivers the truncated sample mean y(k, d”) as the
final point estimator of the steady-state mean. To compute the associated

nominal 100(1 — ) % CI for y , MSER-s applies the classical NBM method to the
truncated sequence y; i j = d* +1,2,.., k, which is now regarded as the

“original” (raw, unbatched) observations from which It is possible to compute:

! ! . . k—-d
k* =20 "new" batch means with batch size m* = l = J

Therefore, the t ™ new batch mean is computed as:

m*
1
D Yameonn s 1=12,.,K (10)

7.(m*,d") = —
=1

And the corresponding grand average and sample variance of the new batch

means are given respectively by:

k*
- 1
7k m,d) = = ) 5i(mt,d) (11)
1=1
1 &
30, d7) = ) 0, d) = F0kmtdIP (12)
=1
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The final 100(1 — &) % CI for y is:
sy(k*,m*,d")
Vi

a . . .
a denotes the 1 — > quantile of Student’s t-distribution with
2

y(k,d*) £ t(k*—l,l—%) (13)

Where tler—11-

k™ — 1 degrees of freedom.

CI in (13) is consistent with the recommendations of (Schmeiser, 1982) on
applying the method of non-overlapping batch means to a data set y; : j =
d* + 1,2, ..., k that which is a realization of a covariance stationary simulation

output pI‘OCCSS.
2.2 OVERVIEW OF N-SKART

N-Skart was proposed by Tafazzoli et al. (2011), the input to N-Skart is a
simulation-generated time series {y; :7 =1, . . ., n} of fixed length N, where
N > 1280 and the user specifies the required coverage probability (1 — a)
(where o < a < 1) for a CI estimator of ¥ based on the given data set. N-Skart
handles the start-up problem by applying the randomness test of (Von
Neumann, 1941) to determine sufficiently large values of the batch size m and
spacer size dm (where m = 1 and d = o) such that the corresponding k spaced

batch means:

1 .
yj(m,d) = — 3L, Yijarn-1mei o] = 12 k (14)

are approximately independent of each other and of the initial condition. It
follows that any effects due to initialization bias are limited to the initial spacer
{yi :i=1 ..., dm}; and this is the reason why N-Skart uses the initial spacer as

the warm-up period so that the first dm observations are deleted (ignored).

If the first dm observations -that are deleted- are so large, then the data set size N
may be not large enough to enable N-Skart to determine sufficiently large values
for the spacer size and batch size such that the spaced batch means pass the

randomness test, then N-Skart issues a warning and gives the user options either

to stop or to continue anyway in computing point and CI estimators of .
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Beyond the truncation point dm, N-Skart computes k truncated, nonspaced

batch means with batch size m

m

1 _ .

yj(m) = EZ Ya+j-vm+i J =12,k
i=1

Where k is taken large enough to use as much of the dataset{y; :i=1,..., n}as
possible; and then N-Skart computes the sample mean }7(m, k) and variance of
the truncated non-spaced batch means Srzn, i, respectively,

k

k
N 1 1 N
ymk) =7 m she=7) byem -3 15)
j=1

j=1
Finally, N-Skart delivers an asymptotically valid 100(1 — a) % skewness- and

autocorrelation-adjusted CI for y having the form:

As S

2 . As? .
nk 5(m, k) - GRJ—25)  (16)

y(m k) — G(L)

Where the skewness adjustments G(L) and G(R) are defined in terms of the

function G(w) ,where:

G(w) = —41%32(;)-3)-1 ;B = % (17)

PN

B is approximately unbiased estimator of the marginal skewness of y;(m)
computed from the k spaced batch means of the form (14) with batch size m that

are separated by spacers of size at least dm. k is taken large enough to use the
entire data set of size N.

The skewness-adjustment function G (.) has the arguments:

R=ta; .:
2

1° L= tl—%,k—

1
and the correlation adjustment A is computed as:

Ao 1+ @y

= — (18)
1=&ym
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Where @y (m) is the standard estimator of the lag-one correlation of the

truncated non-spaced batch means.

Pyam) = CO””[)’j(m); J’j+1(m)]

So, N-Skart is dealing with the problem of initialization bias by some of
inaccuracies. Whereas to determine warm-up period N-Skart applies the
randomness test of (Von Neumann, 1941) to the current set of batch means to

determine

the required batch count, batch size, and data-truncation point beyond which all
computed spaced batch means are approximately independent and identically
distributed (i.i.d.). While that may require increasing batch size or the spacer size
in each time the test is failed, and that may be required to increase the whole

sample size over than the size of simulation run N.

In this case, N-Skart issues a warning to the user, stating that the randomness test
could not be passed because of insufficient data. The warning also notes that if
the user decides to continue the procedure under the given circumstances, then
the delivered CI might not achieve the target confidence level. Here the user has
two choices: a) quit the procedure without delivering a CI; or b) continue with
construction of the requested CI by ignoring the warning. Therefore, it does not

determine warm-up period with sufficient accuracy, resulting in inaccurate
estimate of CI for y.
This problem has been avoided in MSER-s as it deals with the problem of

initialization bias differently. However, it deals with this problem only and does

not deal with the problems of autocorrelation and data skewness.

Therefore, pursuant to the recommendation by Mokashi; Tejada; Yousefi; Xu;
Wilson and Tafazzoli (2010), the current paper suggests a new procedure based

on a combination of both N-Skart and MSER-s procedures, taking the

advantages of both in estimating CI for y. Researchers have launched the
proposed Procedure name "Mok-Nskart".

3. OVERVIEW OF THE NEW PROCEDURE (MOK—NSKART)

Mok-Nskart relies first on MSER-s in identifying data truncation point and

dealing with the problem of initialization bias, a way that ensures accurate
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estimate CI for y. Then Mok-Nskart relies on N-Skart in dealing with the

problems of autocorrelation and skewness, and finally constructs a valid estimate

CIfor y . Fig. 1 depicts a high-level flowchart of Mok-Nskart.
3.0 DETAILED ALGORITHMIC STATEMENT OF MOK-NSKART

The first two steps are like MSER -5 procedure, while the rest of the steps are like
N-skart.

For given sample size N, compute

number. of batches of size S then

> Compute non-overlapping batch
means

NG

Set max.size of data-truncation point
==
L= lzl

Is max. batch

count reached? Ve

No

Compute grand mean of current set of
batches determined using batch count,

N2
Compute test statistic and CIT of the ]

current set of batches

N

Increase of data-truncation point (d)by 1

M

Determine minimuin test statistic ]g

N2

Deliver optimal truncation point d* &
worm-up period

N

Let number of batches = S0 & increase ]

\ ) (

batch size, then compute non spaced
batch means

N2

Compute autoregression-adjusted
variance estimator
N

Compute spaced batch means & associated
skewness-adjusted t-ratio

N

Compute skewness and
autoregression-adjusted CI

Ve

Fig 1: High-level flowchart of Mok-Nskart
— Data preparation

Divide the given sample data set of size N to k batches, each of them has size

m=s, such that k = l%] .Compute batch means y; in Equation (5) and use the

batch means with batch size 5 as basic data items. Then compute the grand
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average ¥ (k, d) in Equation (6) and variance of truncated batch means s (k, d)

in Equation (7)
— Warm-up period

Skip the first d batches from the batch means data set where {d =

01,2,.., EJ }, then use the truncated batch means to compute a CI analog to

each value of d as in (8).

Depending on (8), compute the CI half-length analog to each value of d, the
optimal truncation point d* will be that value at which CI half-length is
minimum. Therefore, warm-up period has (d* * m) observations. Where,

Zl_% Sy (k,d)

)

d* =arg minosd<[§] —

— Autocorrelation Adjustment for the Variance Estimator

Use the truncated means - after skipping d” - as the basic data. Divide it into

k* = 50 batches with size m* = lk;f*

N-Skart exceeds those in MSER-s (starting with k™ = 21,then increased k* up

J. In this way, number of batches in Mok-

till results became stable), batch size m™ in Mok-Nskart also is bigger than that in
N-skart. In that manner Mok-Nskart forms a set of approximately independent

batch means.

Compute both of: truncated batch means y,(m”, d*)in Equation (10), grand

mean y,(k*,m*,d*) in Equation (1) and sample variance s%(k*, m*,d*) in

Equation (12).

sj%(k*,m*,d*)
k*

of variance of the grand mean var[y,(k*,m*,d*)] under assuming that means

Depending on equation (12), can be used as an unbiased estimator

.. sy(k*m*,d")
are iid. However, means are rarely uncorrelated, therefore I

considered as a biased estimator to variance of the grand mean.

2 * PRt Y
sy(k m*,d*)

So, Mok-Nskart is like N-Skart adjusts o by the correlation-adjustment

factor A based on (18) considering the effect of autocorrelation in batch means.

2 * * 3%
Asy(k m*,d")

Therefore, will be an unbiased estimator of var[y,(m*,d*)].Itis
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worth noting, Mok-Nskart depends on equation (1) as a point estimator
computed from truncated means, contrary to what has been followed in MSER-
s which considered the truncated sample mean y(k,d") in (6) as a point
estimator.

2 * * g%
sy(k m*,d*)

So, Mok-Nskart is like N-skart, adjusts o

by the correlation-adjustment

factor A to compensate for any residual correlation between the truncated batch
means; that will improve the performance of Mok-Nskart’s final CIs (Tafazzoli

etal., 2011).
— Skewness Adjustment to Student’s t-Statistic

When the truncated, non-spaced batch means exhibit significant departures
from normality, Mok-Nskart -similar to N-skart- applies an appropriate
adjustment to the usual critical value of Student’s t -distribution to yield a valid
CI for y (Tafazzoli et al., 2011). Mok-Nskart inflates the batch size for a highly
skewed process to mitigate at least partially the effect of non-normality of the

batch means on the associated NBM Student’s t —statistic.

Therefore, the skewness adjustment that Mok-Nskart applies in this step can be
crucial in delivering a CI with good coverage. Moreover, it has been found that
the batch-size increases imposed in previous steps of Mok-Nskart are necessary to
ensure that the skewness of the batch means has sufficiently small magnitude, so
the skewness adjustment is effective. In this step, Mok-Nskart adapted the
skewness adjustment developed by (Willink, 2005 & 2006).

To obtain an approximately unbiased estimator of the marginal skewness of the
current set of truncated, nonspaced batch means, Mok-Nskart computes this
skewness estimator from approximately i.i.d. spaced batch means, constituting a
subset of the current set of non-spaced batch means. The associated spaced batch
means have approximately unbiased estimators of their required marginal
moments: the grand mean in equation (11), the sample variance in equation (12)

and the sample third central moment {(k**,m~*,d** ), where:

¢l m,d°) = Gy T (™, d) = 30, m?, d9)° (19)

k*—1)(k*-2)
An approximately unbiased estimator of the marginal skewness of truncated

batch meansis B , where:
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{(k*, m*’ d*)

g nmed)
30k, m*, d)

(20)

— The correlation and Skewness-adjusted CI

Calculate G(L) and G(R), the skewness-adjusted quantile of Student’s t - ratio
for the left and right half-lengths of the proposed CI. The function G(w)is
defined by (17). Thus Mok-Nskart provides the correlation and skewness-
adjusted CI

= 2(k* m*d*) _ e
Gk*,m’,d) = G (L)\/@,y(k*,m*, d") - G(R) |

Finally, Mok-Nskart delivers skewness- and autoregression-adjusted 100(1 — ) %

CI for y with the user-specified coverage probability and stops.

4. PERFORMANCE EVALUATION OF MOK-NSKART

To evaluate the performance of Mok-Nskart with respect to coverage probability
and the mean and variance of the half-length of its CIs, Mok-Nskart was applied
to a carefully selected set of test problems as explained in (Tafazzoli, 2009)&
(Tafazzoli et al,, 2011) including processes with characteristics that are typical of
many large-scale practical applications of steady-state simulation, and processes
exhibiting extremes of stochastic behavior that are commonly used to stress-test
simulation analysis procedures. For each test process, the steady-state mean is
known; therefore, the empirical coverage probabilities were employed for the CIs
delivered by Mok-Nskart as the primary means of evaluating the performance of
the procedure. To illustrate the performance of Mok-Nskart for what might be
considered “small,” “medium,” and “large” data sets, the following sample sizes

in experiments are used: 10 000; 20 000; 100 000; and 200 000.

Some results are also presented for N-Skart and MSER-s, providing a direct
comparison with the performance of Mok-Nskart. Beyond CI coverage
probability, the performance of Mok-Nskart is reported with respect to the
following criteria: average CI relative precision (that is, the CI’s half-length
expressed as a percentage of the magnitude of the CI’s midpoint); average CI
half-length; and variance of the CI half-length. Each experiment includes 1000
independent replications of the selected output analysis procedures for

constructing 90% and 95% Cls. Given below is a brief description of each of the
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test processes used in our performance evaluation of Mok-Nskart. Complete
details for each of these test processes are given in (Tafazzoli, 2009) & (Tafazzoli

etal., 2o11).

— (M/M/1) Queue Waiting Time Process with Empty Initial Condition
and 90% Server Utilization

The test process is the sequence of waiting times in the queue with an empty-

and-idle initial condition, an interarrival rate of A = 0.9 customers per time unit,

and a service rate of u = 1 customers per time unit. In this system the steady-

state server utilization is p = 0.9 , and the steady-state expected waiting time is

__p
V= asn

= 9 time units.

—(M/M/1) Queue Waiting Time Process with Empty Initial Condition and

80% Server Utilization:

The test process is defined in the same way as for the previous test process, except
the interarrival rate is A = 0.8 customers per time unit so that the steady-state

server utilizationis p = 0.8, and the steady-state expected waiting time is y = 4

time units.

— (M/M/1) Queue Waiting Time Process with 113 Initial Customers and
90% Utilization

This test process has the same interarrival rate and service rate as the first test
process (A=0.9 and u=r1), but with an additional condition that 113 customers are
already present in queue at time o. The first “regular” customer arrives after time
o and begins service after the initial 113 customers have finished service. This
initial condition ensures that the expected queue waiting time for the first
regular customer to arrive after time o is 10 steady-state standard deviations above
the steady-state mean, ensuring a pronounced initial transient for this test
process as explained in (Tafazzoli, 2009).This process has the same steady-state
parameters as the first test process—i.e., a server utilization of p=0.9 and steady-

state mean queue-waiting time of y=9 time units
— M/H2/1 Queue Waiting Times

The test process is the sequence of waiting times in a queuing system with an

empty-and-idle initial condition, a mean interarrival time of 1.0, and a hyper-

[129]



Mok-Nskart: New Procedure for estimating Confidence interval of Steady State Simulation Output Mean

exponential service-time distribution that is a mixture of two exponential
distributions such that the service times have a mean of 0.8 and a coefficient of

variation of 2.0. Thus, in steady-state operation this system has a server

utilization of p = 0.8 and a mean queue-waiting-time of y = 8 time units.
— First-Order Autoregressive (AR (1)) Process

The test process is an AR (1) process with autoregressive parameter 0.995 and
white-noise variance 1.0, so that the steady-state distribution of the process has
marginal mean y = 100 and marginal standard deviaton oy = 10.0125.
Because the initial condition J3 =0 was chosen, this test process has
pronounced negative initialization bias. Although this process is normal, it has a
pronounced autocorrelation structure that severely distorts the behavior of the

classical method of batch means.

The M/M/1 queue-waiting-time process is characterized by a relatively short
warm-up period. However, the process exhibits a pronounced autocorrelation

structure, with the autocorrelation function for the waiting time decaying slowly

as the lag increases. Also, the M/M/1 queue waiting times have a steady-state
probability distribution which has a non-zero probability mass at zero and an
exponential tail. This results in a slow convergence of the batch means to the

normal distribution with increasing batch size.

Depending on R language, version i386 2.15.2 and RStudio 0.98.1091 platform a
programming code is written to perform simulation and get results for our

selected models.

Table 1 summarizes the performance of Mok-Nskart, MSER-sand N-Skart on
the selected M/M/1 queue-waiting-time process.

From the results in Table 1,

— It is evident that the CI properties obtained from N-Skart were better than
those obtained from Mok-Nskart and MSER-s. The CI overages delivered by
N-Skart were close to the corresponding nominal coverage levels. Cls
delivered by Mok-Nskart had acceptable overages, in the sense that Mok-
Nskart gives better results than MSER-s, and less performance than of N-
skart. However, it is virtually overcoming the shortcomings of both

procedures.
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— For smaller sample sizes, it can be said that the performance of N-Skart to be
unacceptable, N-Skart failed in all iterations (Failed = 1000 times) to pass Von
Neumann test, which is used to determine warm-up period, and then Cls
delivered by it will be influenced by initialization bias. Moreover, these Cls
will be based on sample size less than that required to pass randomness test,

resulting in wider half lengths and misleading coverages.
Table 1

Performance Of Mok-Nskart, N-Skart And MSER-s For M/M/1 Queue-waiting Time Process
with p = 0.9 And empty - and Idle initial condition Based On 1000 Replications of Each

Procedure
Overall | Procedure
sample 90% Confidence Interval Properties 93%Confidence Interval Properties
size
N coverage | Relprec. | Avg half | Varhalf | Bias | MSE | Failed | coverage | Relprec. | Avg.half | Varhalf | Bias | MSE | Failed

10000 | N-skart 58% 31.25% | 3.18 5.25 0.08 | 3.46 | 1000 | S1.7T% 37-86% | 4.02 724 0.01 | 3.54 | 1000
Mzer-5 67% 22.85% [ 1.87 0.79 0.57 323 |0 65.3% 28.08% | 2.46 1.51 048|402 (0
Mok-Hskart | 75 4% 27.43% 2.59 2.95 064|333 |0 80.1% 33.47% 336 7.69 059 | 418 |0

20000 | N-skart 58.8% 23.49% [2.26 1.08 0.06 | 1.71 | 546 94.8% 28.3% 2.83 1.87 0.00 | 1.51 | 261
Mser-3 73.3% 18.9% 1.67 0.51 033|196 |0 75.4% 22.94% | 2.03 0.64 032|154 |0
Mok-Nskart | 759 6% 21.08% (2 1.41 039 [ 2.00 |0 87.3% 25.96% | 2.6 3.06 037|188 0

50000 | N-skart 90.8% 16.81% | 1.63 0.71 0.01|0.75 | 311 96.4% 20.23% |2 1.49 0.06 | 0.65 | 287
Mzer-5 80.2% 13.84% | 1.24 0.20 012 | 0.80 |0 87.1% 16.63% | 1.48 0.31 017 | 0.71 |0
WMok—Mskart § §3.3% 14.88% 1.43 0.88 0.14 | 0.80 (0O 90.6% 18.33% 1.84 2.54 019 (072 |0

100000 | N-skart 92.7% 11.97% | 1.13 0.28 004 (034 |6 95.8% 14.42% | 1.37 0.46 007|038 (7
Mzer-3 B4.7% 10.36% | 0.83 0.07 008 [ 034 |0 85.4% 12.64% | 1.13 0.11 011 | 0.3% (0
Mok-Hzkart | g5 6%, 10.78% |1 0.25 009 [ 0.34 |0 85.6% 13.47% | 1.28 0.61 011 | 038 (0

200000 | N-skart 92% 8.3% 0.77 0.03 0.03 | 017 |0 95.9% 10.02% | 0.53 0.07 001|018 (0
Mzer-5 87.6% 7-62% 0.68 0.03 0.06 | 0.17 |0 91.7% 9.14% 0.82 0.04 004|018 |0
Mok-Hzkart | 5%, 7-81% 0.72 0.07 0.06 | 0.17 |0 92.1% 9.39% 0.87 0.13 004 | 018 (0

— As the sample size increased, the CI coverages delivered by Mok-Nskart were
close to the nominal coverage level, as they were also close to the coverage
delivered by N-skart; for example with the sample size N =200,000, the
nominal 90% Cls delivered by N-Skart had an empirical coverage probability
of 92% and an average relative precision of 8.3%, while the corresponding
measures by Mok-Nskart were 89% and 7.81% respectively, whereas they
were 87.6% and 7.62% by MSER-s.

— The CIs delivered by MSER -5 are the less dispersion at all, the variance of the
CI half-lengths is the smallest —compared with Mok-Nskart & N-Skart — at all

sample sizes and different confidence levels.
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— With respect to the point estimators of y delivered by Mok-Nskart, MSER-s
and N-Skart, it was observed that for all the sample sizes considered, the
point-estimator bias was substantially larger for both Mok-Nskart and
MSER -5 than for N-Skart.

Figure 2 displays the distribution of CIs half-lengths delivered by all three
procedures in this test process for the selected sample sizes. It is clear from both
histogram and boxplot analog to each procedure that Cls delivered by N-Skart
and Mok-Nskart had half-lengths skewed to the right, with mode, which is
greater than that of MSER-s. Meaning that Cls delivered by N-Skart and Mok-

Nskart were the wider, therefore, their actual coverage was the best.
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Figure 2

Boxplot and Histogram of CIs Half-lengths delivered by N-skart, MSER-5 And Mok-Nskart For
M/M/1 Queue-waiting Time Process With p = 0.9, N = 10000 and a = 0.05 And Empty
— And Idle Initial Condition

5. CONCLUSION

In this article a new, completely automated batch-means procedure was
developed, called Mok-Nskart. It considered as a combination of both N-Skart
and MSER-s procedures, taking the advantages of both in estimating CI for
steady state mean y . It works for constructing a correlation-and skewness-
adjusted CI for the steady-state mean of a simulation output process in which the

user supplies a single simulation-generated series of arbitrary length, and the user
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specifies the desired coverage probability for a CI based on that series. from the

experimental results presented in Section 4.

It is evident that Mok-Nskart provided close conformance to the user-specified

CI coverage probabilities in all the test problems that was considered.

The study recommends depending on Mok-Nskart procedure in simulating
some other processes, such as M/M/1/LIFO, M/M/1/SIRO and (s, S) inventory
control systems. Also, it recommends depending on Mok-Nskart to estimate a

confidence interval for the steady state variance.
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